If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4g^2+9g+2=0
a = 4; b = 9; c = +2;
Δ = b2-4ac
Δ = 92-4·4·2
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-7}{2*4}=\frac{-16}{8} =-2 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+7}{2*4}=\frac{-2}{8} =-1/4 $
| (x+3)*2=38 | | -8n^2-9n-2=0 | | 3u^2+6u+3=0 | | 3x-4+2x=16+2x-5 | | 4x-1/2=x | | 9(c−86)=72 | | 2=22-2m | | 7q^2-5q-6=0 | | 7x-5+x=20 | | 3x+47+37=5×+62 | | 5+7x-4x=-9-3x-4 | | d+(-5.004=2.826 | | 5x-15=6x+3-7x | | 7*x^2+16*x-31=0 | | 3-7x-1=x+18 | | 9x=6x+9= | | 9-3(k-9)=-4K+20-2 | | 189/x=21 | | 3x-8=4-(8+5x) | | (2x+5)/(x-2)=5 | | 7-8x=63 | | 85+2x=10x-35 | | 40-x/5=10 | | 30-3x=10 | | 5-(8x7)+18x=31x-(90+28x)-45 | | -5(8x-7)+18x=31x-(90+28x)-45 | | 2=f+1/3 | | e/2-7=9 | | 14x+3-7x+4-8x=0 | | (159,62+x*18,02=248,84,x) | | 8x=1=(3x=1)/5 | | 2x(5+3x)-(6x-1)(x+4)=8x-6 |